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ABSTRACT

Experimental results are obtained for the lowest six natural frequencies and

the associated nodal lines of trapezoidal plates of uniform thickness clamped on

one edge. Three series of plates are investigated. Each series consists of six

plates and is developed from a triangular plate by progressively cutting off por-

tions of its tip parallel to its clamped edge, giving a clipped wing effect. Two

of the series originate from triangular plates of delta wing plan form with aspect

ratios of 2 and 4. A triangular plate with a mean chordline sweepback angle of

450 is used as the basis for the third series. Results are presented in the form

of graphs, tables, and photographs. A method of treating plates of non-isotropic

material is described. The use of interpolation to extend the results to a broader

field of plate shapes is also discussed.
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NOMENCLATURE

The following nomenclature Is used in this paper:

C - root chord (in.)

-o . half span of complete triangular plate (in.)

-A I amount of half span cut from tip (in.)

f - natural frequency (c.p.s.)

fo = natural frequency of a complete triangular plate (c.p.s.)

S- 2 n f - n a t u r a l a n g u l a r f r e q u e n c y ( 1 / s e c . )

"WO = 2nf0

wD - dimensionless angular frequency

h = plate thickness (in.)

B - modulus of elasticity (lb./in 2 )

p - mass density of plate material (lb. iecn)
. in-

Poisson's ratio

D - flexural rigidity - Eh3/2(l -,A2)

- scale factor



INTRODUCTION

As an extension to the experimental investigations that have been made of the

natural vibrations of cantilevered trinagular plates this study was undertaken to

explore the effent of cutting off portions of a triangular plate parallel to its

clamped edge. The vibrational characteristics of the trapezoidal plates formed by

such cuts appear to be of as much importance as those of triangular plates, since

uniform flat plates of both plan-forms approximate basic wing and tail surfaces on

many guided missiles and some high speed aircraft.

The variations in plan form of trapezoidal plates are seemingly endless. Yet,

if one is willing to confine attention to the case of parallel root and tip chords,

any shape mav be regarded as a function of three convenient parameters: aspect

ratio of the plate (extended to form a complete triangle), sweepback angle of the

* mean chord line, and ratio of the span removed from the triangle to the original

span of the triangle. If, for any values assigned to two of these parameters, it

were desired to examine five different cases of the remaining parameter, then 125

plate shapes would be required. Such a program while not impractical, seems overly-

ambitious as long as the application of flat plate vibrations to aircraft and missiles

is still in an exploratory stage, and while ccnsiderable attention is being given to

finding analytical solutions.

This report covers eighteen trapezoidal shapes derived from only three tri-

angles. In a later section it will be shown how interpolation may be used to cover

the field of delta wing shapes from aspect ratio 2 to aspect ratio 4, and for an

aspect ratio of 4, interpolation may again be used to explore mean chord sweepback

angles ranging from tan"1 0.5 to tan-1 1.0.

The configurations and designations for the three series of plates investigated

are given in Figs. 1, 2, 3, and 4. Series I and II are both developed from triangular

plates of the delta wing shape (the trailing edge is a straight line from wing tip

to wing tip). The root chord in series I is equal to the total span while in series
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II it is half of the total span. Series III originates from a sweptback triangular

plate with a root chord equal to half its span and a mean-chord sweepback angle of

4o. The parameter • (see Fig. 1) varies over the same range for each

series, from 0 to 0.4. All three triangular plates from which the three series are

developed have been investigated previously.

The test procedure and equipment used for the experimental determination of

the natural frequencies and node lines was the same as that described in reference

(1). The plates for each series were cut progressively from the steel plates A-1,

A-2, and S-5 used in the authors' earlier investigations of triangular plates. Thus

the material properties were kept fixed for a given series. These properties are

listed in Table II.

.. ...
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DISCUSSION OF RESULTS

Series I

Figure 5 shows the photographs of the node lines for the first six natural

mcies of plates 1-1, 1-2, 1-4, and 1-6 arranged in order of increasing frequency

from left to right. For comparison the node lines for the first six natural modes

of the triangular plate from which the series was developed are also shown under

the plate designation 1-0. The frequencies corresponding to these modes for all

five plates shown, as well as those not shown, are given in cycles/sec. and in a

dimensionless form in Table I. A discussion of the material properties used in

computing these dimensionless frequencies will follow in a subsequent section.

By choosing a given mode in Fig. 5 and observing the behavior of the node lines

as the parameter 40 ., increases, it can be seen that the changes in mode

shape from plate to plate follow definite patterns, thus establishing a type of

shape family. An exception to this case in series I occurs in the 3rd modes of

plates I-C and I-1 which belong to the shape family represented by the 4th modes of

plates 1-2, 1-4, and 1-6 and the 4th modes of plates 1-0 and I-1 which belong to the

same family as the third modes of 1-2, 1-4, and 1-6. In each mode the frequency in-

creases as more of the tip is removed. This behavior is true for the other two series

also and is to be expected, since an increase in brings about a de-

crease in the mass of the plate. The fundamental mode of all five plates can be

generally classified as a spanwise bending mode since only a little bending occurs

in the chordwise direction. Similarly, the second mode can be classified roughly as

a tc•rsional mode, again remembering that some spanwise bending does occur. It is of

little use to attempt a simple classification of the remaining modes since they are

composed of varying amounts of chordwise and spanwise bending.

A clear picture of how the amount cut from the tip affects the frequency of the

resulting plate is given by the graphs of Fig. 8. Here percentage change in frequency,
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is plotted against the parameter for all six modes

of all six plates. Each curve corresponds to a given shape fiwily so that the Per-

centage increase in frequency is based on that mode from which the comp.|ued mode

evolved. Families A, B, E, and F are composed of the 1st, 2nd, 5th, and 6th modes,

respectively, of all six plates. Family C consists of the 3rd modes of plates I-0

and I-1 and the 4th modes of 1-2, 1-4, and 1-6 while the 4th modes of I-0 and I-1

along with the 3rd modes of 1-2, 1-4, and 1-6 make up family r.

The curves show that for a given increase in Apt,, there is a greater

percentage increase in frequency in families A and C than in any other family. The

fact that family A is primarily a spanwise bending mode and family C has a large

percentage of spanwise bending in it while the remaining four families lean heavily

toward torsional modes suggests that removing portions of the tip has a greater

effect on the frequency of spanwise bending modes than it has on chordwise bending,

or "torsional" modes. This can be explained by the fact that the spanwise stiffness'

increases rapidly as the effective span is decreased while the torsional stiffness is

affected only slightly by these changes.

Series II

The node lines for the first six modes of plates 11-1, 11-2, 11-4, and 11-6

along with those of 11-0 representing the triangular plate from which series II is

developed are given in Fig. 6, arranged again in order of increasing frequency from

left to right. The frequencies for all modes of all plates in series II including

II-0 are given in Table I. It can be seen from thn photographs that for this series

each given mode makes up a distinct shape family. A general classification can be

extended to three modes of this series. The fundamental and third mode are primarily

spanwise bending modes while the second mode is quite clearly a torsional mode.

The graphs of Fig. 9 show how the frequencies of the plates of this series are

affected by tip removal. The increased effect on bending modes is again shown by
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the behavior of the curves of the shape families A and C which correspond to the

first and third modes. For 14 in the range 0 to 0.2 curve E behaves much

like A and B. A check of the node lines of the fifth mode in this range shows that

the mode consists of a large percentage of spanwise bending. From 0.2 to 0.4 curve

E behaves much more like B which represents the second mode. A study of the node

lines of the fifth mode of plates I-4 and 11-6 bears this out as it shows that a

considerable amount of torsion is present along with the bending.

Series III

The node lines of series III are presented in the photographs of Fig. 7 arranged

in the same manner as the first two series. Table I and the graphs of Fig. 10 show

the effect of tip removal on the frequency of vibration. Again in this series all

modes of a given order belong to the same shape family. The same general classifi-

cations can be applied to the first and second modes of this series that have been

given the corresponding modes of the preceeding series. The other modes are too

complicated to be given simple classifications. This is borne out by the absence in

Fig. 10 of the distinct difference in behavior between bending and torsional and

combined modes so apparent in Figs. 8 and 9. However, curve C in Fig. 10 does seem

to indicate that the third mode might behave as a bending mode even though it may

not appear so from its node lines.

FREQUENCIES OF PLATES OF SIMILAR PLANFORM

The frequencies given in Table I can be used to predict the frequency of a

plate with a similar planform but having different size, thickness and material

properties by using Eq. (1) in which the primed quantities refer to the plate whose

frequency is to be predicted and the unprimed quantities refer to the plate whose

frequency is known.
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(LtLL,01) f(1)
a is a scale factor relating all the dimensions of the two plates except the thick-

ness. It is shown in the development of this expression in reference (1) that this

conversion formula is exact only for plates having the same Poisson's ratio but it

also provides a good approximation for plates whose Poisson's ratios are not much

different.

The use of Equation (1) is made less cumbersome by rearranging it and combining

the quantities relating to the plate of known frequency into a dimensionless fre-

quency. Introducing C OCC into (1) gives

wh.e ., =,fD ~ i . i- .

1L 2 LLr ii 1 J 2

Thrfr (3 cn e rite a

C z% *

or -(3

but

Where w =2itf, D)

Therefore (3) can be w-itten as

0'

where = -CIO dimensionless frequency (6)
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This form of the frequency is used in reference (3).

Equation (5) gives the unknown frequency of the new plate in terms of its pro-

perties and dimensions and the dimensionless frequency, WOD . It is seen that once

WOD is computed, the user of this transformation need no longer be concerned

with the properties and dimensions of the original plate for which the frequency is

known. This development also eliminates the scale factor o. and introduces in its

place a significant dimension of the plate, the root chord. The dimensionless

frequencies tabulated in Table I were computed from Eq. (6).

FR&4UL•NCIES OF PLATES OF DIFFERTT PLANFORM

The graphs and tables of this report may be used to estimate the natural fre-

querncies of a plate having a planform within the range, or slightly outside the

range, of the planforms actually tested. This may be done by a simple interpolation

or extrapolation. Confidence may be placed in such a procedure as long as the

numerical values being interpolated between, or extrapolated from, are not far apart.

A study of the effects of aspect ratio and sweepback on triangular plates should

also prove helpful in determining whether the frequency behavior is sufficiently

linear in the interval being considered. The method will be demonstrated by several

examples.

I. Interpolation applied to plate of truncated delta-wing planform.

In Fig. 11(a) is shown a delta-wing planform which is intermediate in shape

between the plates of Series I and Series II. The aspect ratios of the complete

triangular delta-wing shapes are as follows:

Series I. Aspect Ratio = 2 7(O

Series II. Aspect Ratio - .- L 2(10) " 4-C

Plate (a) Aspect Ratio = LL1 -±(W) = 5'
C 1

The graphs of frequency vs. aspect ratio for complete triangular plates reveal that

in the range from 2 to 4 the frequency of the first six natural modes are approximately



TABLE I

MEASURED AND DIMiLNSIONLESS FREQUENCIES FOR TIP R-MOVALS OF FROM 0 10 40 PERCENT OF SPAN

SERIES I

Family A B c D E F
Mode 1 1 2 4 5 6

V1-o/[o I wD "f wD w D f D wD f f wD

0 32.8 22.0 91 58.7 161 110 181 119 283 186 348 228

.1 34 22.7 93 60.0 179 120 181 119 293 192 352 231

.2 38.5 25.8 97.6 63.0 184* 121 212ý' 1142 302 198 362 238

.23 41.9 28.0 99.4 64.1 186* 122 235*'* 157 304 200 366 240

.3 48.3 32.3 103.4 66.8 190" 125 266•': 178 308 202 379 249

.35 53.7 35.9 107.4 69.4 196" 129 299?-,i 200 314 206 404 265

.4 60 40.1 112 72.3 1 202; 133 350;:* 234 312 205 436 286

* Family D
Family C

SERIES II

Family A B C D E F
Mode 1 2 - 4 6

A,/ iO f w[D f wD f - wD f w fwD f D

0 34.5 5.87 136 23.8 190 32.4 325 56.1 441 76.0 578 99.7

.1 37 6.30 142 24.8 198 33.7 335 57.8 482 83.1 583 101

.2 42 7.15 153 26.7 223 38.0 364 62.8 561 96.9 598 103

.25 46 7.83 157 27.4 243 41.4 374 64.5 596 103 621 107

.3 50.5 8.60 161 28.2 268 45.6 385 66.5 606 105 660 114

.35 56 9.53 169 29.5 300 51.1 410 70.8 629 109 695 120

.4 64 10.9 175 30.6 339 57.7 434 74.9 639 110 718 124



TABLE I (cont.)

SERIES III

ly • A _ B o .c D E FModeI..............+. ............Mode 1 2 3 4 _

wD D wD -'~D f wD f wD
0 26.3 4.50 101 17.6 171 29.3 259 44.7 346 59.7 522 90.0

.1 27.9 4.78 110 19.2 184 31.5 274 47.3 376 64.9 525 90.5

.2 31.5 5.39 122 21.3 198 33.9 289 49.8 438 75.6 542 93.5

.25 34.8 5.96 130 22.7 215 36.8 300 51.7 476 82.1 567 97.8

.3 38.5 6.59 136 23.8 243 41.6 312 53.8 505 87.1 623 107

.35 44.9 7.69 143 25.0 277 47.4 327 56.4 540 93.2 674 116

.4. 51.7 8.85 151 26.4 314 53.8 347 59.9 573 98.9 699 121

/



TABLE II

Plate Properties

Property " Experimentally Determined ...... ..

Spanwi~e E Chordwis E f g 3 h (assumed)
Plate (#(#/in)n (#/in. ) (#/in.) (in.)
Series - I 29.3 x 106 31.5 x-l6 .28! .0622 .29

6 
6

Series - II 29.2 x 10 27.8 x 10 .281 .0613 .29

Series - III 29.0 x 106 27.8 x 106 .281 .0613 .29

S0" 1 x 110 6 6
29.3 x 10 31.5 x 10 .282 .0627 .29

square ....

18"x2½" 29.8 x 106 .282 .0585 .29

beam



linear functions of aspect ratio and it was decided to use this as a basis for inter-

polation in the truncated plates as well.

Furthermore it has been found that interpolation produced better results, on the

whole, when the semi-span of the complete delta plate was used to compute dimension-

less frequencies, rather than the chord. Noting from Eq. (6) that the dimensionless

frequency varies as the square of the length, c, then the dimensionless frequencies

of Table I, Series I should be divided by 4 if the 10"1 semi-span were used to compute

wD" Series II dimensionless frequencies would be unaffected since the semi-span and

chord are equal. Table III gives the dimensionless frequencies for the complete hri-

angular plate ( A•o-'O) of Series I.

TABLE III

Dimensionless Frequencies for Series I, Based on Span

Mode 1 2 3 4 5 6

tD for .61A o. 5.50 1i4.7 27.5 29.8 46.5 57.0

For a numerical example, consider the second mode of vibration (Family B) of the

plate shape in Fig. 11 (a). fI'.9 = 0.

From the graph of family B, Series I, Fig. 8, the frequency ratio is 0 .22

From the graph of family B, Series II, Fig. 9, the frequency ratio is 0,27

Then •D for Series I is 1.22 x 58.7/4 = 17.9 and wD for Series II is 1.27 x 23.8 - 30.2.

Interpolating, we obtain wD for plate (a) = 17.9 + 0.5 (12-3) 21.0
2.0

Next the frequency of an actual steel plate is predicted, aqsuming the elastic

properties as given below.

h o.9 oX 6 .

-I 10' fS-

A - o -., 9

(f x -_-A÷
S8 • i1M' 4
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Then ) WC (7)

Thus for the second mode of this plate, f = '3S'.+ . 1 218 cycles rser second.

The experimentally measured frequency of this plate was 116 cycles per second.

By this procedure of interpolating between Scries I and II to find 00

and then using Eq. (7), the first six natural frequencies of this plate were

calculated and are compared with experimental results in Table IV.

TABLE IV

Comparison of interoolation with exnerimentally observed freouency, Plate (a)

Mode Family A B D C E F

Mode Number 1 2 3 4 5 6

Predicted Frequency 55 118 241 308 372 465

Measured Frequency 52.2 116 225 308 370 447

Percent Difference + 5.4 +1.7 +7.1 0 + 0.5 +4.0

2. Interpolation applied to olate of truncated,. sweptback olanform.

In Fig. 11 (b) is shown a plate which is intermediate in shape between the

plates of Series II and Series III. The completed triangular wing has a total

span of 20" and root chord of 10" as do the plates of Series II and III, so that

all three plates have the same aspect ratio. The graphs of frequency vs. tangent
1

of sweepback angle for complete triangular plates reveal that in the range from

0.5 to 1.0 the frequencies of the first six natural modes are approximately

linear functions of the tangent of the sweepback angle (based on mean chord line)

and it was decided to use this as a basis for interpolation in the truncated plates

as well.

As an example, consider the third mode of plate (b) in Fig. 11.

.1_. 2.
AP10 to
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From the graph of family C, Series II, Fig. 9, the frequency ratio is z o .

From the graph of family C, Series III, Fig. 10, the frequency ratio is - .SI
0

Then 10 for Series II is l.+1 3 ,2.4 4 8.

and 14D for Series III is I.I K 2'1. = 4+-. 1.

Furthermore the sweepback tangents are

Series I, f O 0- .-

Series ii, +ayt d 1. 0

Plate (b), +Eapt OLý 0-.7 0.1

Then s)/ .for plate (b) = +8. - = .G.G

Next the frequency of an actual steel plate is predicted assuming the

elastic properties as Riven below. The modulus of elasticity is based on experi-

ments mnde on plates of similar steel.

E.X 10(fO FsL

4- = +oz
o. __ 7.2zx1o .sec

Then ()•C -- )O 4 --- 9C.+o CD (8)

Thus for the third mode of this nlate, 5 " x 4 fp. 2.17- cycles ter second.

The experimentally measured frequency for this plate was 270 cycles per second.

A comparison between predicted and measured frequencies for the first six modes

of this plate is given in Table V.

1.,



TABLE V

Comparison of interpolation with experimentally observed frequency, Plate (b)

Mode Family A B C D E F

Mode Number 1 2 3 4 5 6

Predicted Frequency 48.2 158 272 366 581 668

Measured Frequency 47.3 150 270 350 579 650

Percent Difference + 1.9 + 5.3 + 0.7 44.6 + 0.3 + 2.8

As a closing remark on interpolation, it seems evident from the photographs of

Figs. 5, 6, and 7, that interpolation may be applied to shapes of natural modes,

as well as to the frequencies of vibration.

THE EFFECT OF NON-ISOTROPY IN PLATE MATERIAL

It is well known that the rolling process introduces a directional character

into the grain structure of metals, the grains being longer in the direction of

rolling. This orientation of grains is only partly relieved by annealing. It has

been found that the ultimate tensile strength and ductility of steel may vary con-

siderably, depending on the direction in which these properties are measured in
2

re-lation to the rolled plate. In attempting to check the accuracy of our tech-
3 4

niques by comparison with work of Barton and Dalley and Ripperger we begcn to

suspect a difference in the moduli of elasticity in the spanwise and chordwise

directions for the steel plate being used. Careful static beam deflection tests

revealed that the moduli in the two directions differed by as much as 7 percent,
6 6

one plate having 29.3 x 10 psi in the direction of rolling and 31.5 x 10 psi

perpendicular to the direction of rolling.

In determining the modulus of elasticity, two beam specimens, 1/4 inch wide

and 1/2 inch wide, were cut from both the spanwise and chordwise directions for each

of the three original triangular plates. The spanwise direction in Series I and
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the chorduoisc direction in Series II and III coincided with the direction cf rolling.

The material was hot rolled steel anproximately 1/16" thick. The edges of the beams

were accurately ground to give a constant uniform cross section throughout. They

were then placed on specially constructed knife edges and deflections were measured

at the center of a 10-inch span, under the action of centrally applied loads. The

load on each beam was gradually increased to a point near the limit of elastic be-

havior, and then gradually decreased to zero. Curves of load versus deflection were

then drawn to insure that the tests were conducted in the range in which deflection

and load were linearly related. The modulus of elasticity was then comnuted from

the compiled deflection and load data, using elementary beam theory. No signifi-

cant difference was found between the moduli given by the 1/A" and 1/2" beams and

it may be concluded that specimens of both widths were amenable to simple beam

theory.

Table II gives the results of these experiments in the form of an average

spanwise and chordwise modulus of elasticity for each plate. Also included in

this table are the measured densities of the plate material and the values of

Poisson's ratio used in com~xting the dimensionless frequencies.

The variation of modulus of elasticity with direction in a non-isotropic plates

poses the question of what value of E should be used in predicting new freouencies

and computing dimensionless frequencies to insure the greatest accuracy. Since

bending in a given direction is related to the modulus of elasticity in that same

direction it appears that it would be proper when attempting to predict, say, the

frequency of a spanwise bending mode to use the spanwise modulus of elasticity.

The dimensionless frequency used for this purpose should be given the same con-

sideraticn if it is obtained from a plate of non-isotropic material. This procedure

4 is quite straightforward for modes consisting primarily of either spanwise or

chordwise bending providing the moduli of elasticityr of the material are known in
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these directions. However, modes in which bending in both directions are com-

bined make it necessary to use some average of the two moduli depending on the

mode shape. The spanwise E's were used in computing the dimensionless frequencies

of shape fanilies A and C in each series while the chordwise E's were used for

shape families B. Due to the complicated shapes contained in families D, E, and

F, arithmetic averages of the spanwise and chordwise moduli were used in comnuting

their dimensionless frequencies.

Another effect of non-isotropy should be pointed out. The shape of a natural

mode is unquestionably altered from the shape that would exist if the plate were

isotropic. We feel that even for appreciably different stiffness in the spanwise

and chordwise directions, the effect on modes which are predominantly spanwise or

chordwise bending would be quite small. For more complicated modes the effect

woujld be more pronounced, and no doubt some of the node lines in Figs. 5-7 are not

quite the same as would be observed for a truly isotropic plate. However, it is

unlikely that the 7 percent maximum difference in spanwise and chordwise moduli

has introduced serious differences in shape.

CHECK ON ACCURACY OF EXPERIMENTS

In order to establish some idea as to the degree of accuracy of the experimen-

tally determined plate frequencies, and as a check on effectiveness of the clamping,

the first five natural frequencies of a 10" x 10" cantilevered square plate and of

an 18" x 21" beam were determined using the same test equipment and procedure used

on the trapezoidal plates. A comparison was then made between the observed fre-

ouencies aid existing experimental and theoretical results. The results of this

investigation are presented in Table VI.

Before the dimensionless frequencies were computed. tests were run to determine the

moduli of elasticity of the square plate and beam, which were cut from 1/16 inch

.- I
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commercial cold rolled steel. These tests were conducted in a manner similar to

those previously discussed with the exception that only the spanwise modulus was

determined for the beam specimen since only spanwise bending occurred in the first

five modes. The moduli determined for •he square plate and beam are listed with

those of the triangular plates in Table II. The first and third modes of the

square plate are primarily bending modes, the second and fourth consist chiefly

of torsion, and the fifth is a combiriation of both. Hence in computing the

theoretical frequencies the spanwise modulus was used for the bending modes, the

chordwise modulus for the torsional modes and an arithmetic average of both was

used for the fifth mode.

When the appropriate modulus is used, the dimensionless frequencies obtained
3

for the square plate agree quite well with both the numerical solutions of Barton
4

and the experimental work of Dalley and Ripperger

The measured beam frequencies also agree closely with the theoretical values
5

based on elementary beam theory
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